来源:科技日报 记者 孙明源
类脑智能已然成为人工智能领域中的热词。近日,“问天I”类脑计算机技术成果在江苏南京发布,该计算机模拟大脑神经网络运行,是国内目前技术领先、规模最大的类脑计算机。
类脑智能又被称为神经形态计算,它通过模仿人类大脑的运作方式,让计算机软硬件实现信息高效处理。相比传统意义上的人工智能,它具有低功耗、高算力的特点。
“人脑是目前已发现的最复杂的信息处理系统,它的简约高效无与伦比。因此人工智能领域的专家们设想,能否以大脑为原型开发出更强大的人工智能。”谈起类脑智能,北京工商大学计算机与人工智能学院教授吴静珠对科技日报记者表示。
模型驱动的人工智能技术存在局限
今年,多款大语言模型面世,全球掀起了一波又一波人工智能热潮。目前,以大模型为代表的人工智能主流应用,事实上都是模型驱动的。程序开发者为软件设置了行为和结构,在此基础上,软件可以通过数据不断得到训练,形成可以与人互动的人工智能。
“这种技术路线的局限性很明显,大模型需要高质量的标注数据,我们不得不为此付出很多人力;更为突出的问题是大模型训练所耗费的计算资源非常庞大,需要超级算力的支撑。另外这种人工智能的自主学习、自适应能力较弱,逻辑分析和推理能力相对欠缺。”吴静珠介绍。
1956年,在计算机科学大家云集的达特茅斯会议上,科学家们就提出或许可以依托脑神经科学和认知科学这两大基础领域,建立多学科协同的工作机制,开发出达到甚至超越人类水平的人工智能。但是,对于当时的技术水平来说这些想法太过超前,无法实施,直到近些年才被提上日程。
吴静珠强调,脑科学和认知科学是开发类脑智能最重要的基础学科。近年来,随着功能核磁共振等成像技术的发展,人类对大脑的认知水平有了很大提高,这为仿照大脑设计计算机软硬件提供了必要条件。
软类脑和硬类脑是实现类脑智能的两大路径
北京工商大学教授、发展中世界工程技术科学院院士韩力群认为,简单来说,类脑智能的实现路径大致可以分为软类脑和硬类脑两类。吴静珠解释道,这二者的主要区别在于侧重点不同,前者重算法,后者重硬件。虽然路径不同,但是总体来看二者相辅相成。
软类脑主要侧重让算法和模型能够模拟大脑的工作模式。虽然没有神经细胞、蛋白质等物质,但是计算机可以模仿大脑的信息加工机制,把现实中的物质形式化,从而在软件中模拟大脑。 共2页 [1] [2] 下一页
红商网优质内容还将同步分发到公众号、视频号、头条号、西瓜抖音、网易号、搜狐号、企鹅号、百家号、好看视频、新浪微博等国内主力流量平台。
|